Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 147(5): 1720-1731, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33476674

RESUMO

BACKGROUND: Arginine methylation is a posttranslational modification mediated by protein arginine methyltransferases (PRMTs). Although previous studies have shown that PRMT1 contributes to the severity of allergic airway inflammation or asthma, the underlying mechanism is poorly understood. OBJECTIVE: This study aimed to explore the role of PRMT1 and its relevant mechanism in the development of allergic rhinitis (AR). METHODS: The expression levels of PRMTs and cytokines were determined by RT-PCR, and the localization of PRMT1 was determined by immunohistochemistry and confocal microscopy. The levels of house dust mite (HDM)-specific immunoglobulins in serum and of cytokines in nasal lavage fluids were determined by ELISA. PRMT1 inhibition was achieved by siRNA and treatment with the pan PRMT inhibitor arginine N-methyltransferase inhibitor-1. RESULTS: PRMT1 expression was significantly increased in the nasal mucosa of patients and mice with AR. The degree of eosinophilic infiltration in the nasal mucosa was reduced in PRMT1+/- AR mice compared with wild-type mice. PRMT1 haploinsufficiency reduced the levels of HDM-specific immunoglobulins in serum and those of TH2 (IL-4, IL-5, and IL-13) and epithelial (thymic stromal lymphopoietin [TSLP], IL-25, and IL-33) cytokines in the nasal lavage fluids of AR mice. In nasal epithelial cells, HDM and IL-4 cooperate to enhance PRMT1 expression through a mitogen-activated protein kinase-dependent pathway. In addition, PRMT1 was essential for the production of TSLP, IL-25, and IL-33 in response to HDM and IL-4. Arginine N-methyltransferase inhibitor-1 treatment alleviated AR in the mouse model. CONCLUSIONS: PRMT1 plays an important role in AR development by regulating epithelial-derived cytokine production and might be a new therapeutic target for AR.


Assuntos
Citocinas/imunologia , Células Epiteliais/imunologia , Proteína-Arginina N-Metiltransferases/imunologia , Proteínas Repressoras/imunologia , Rinite Alérgica/imunologia , Alérgenos/imunologia , Animais , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Líquido da Lavagem Nasal/imunologia , Mucosa Nasal/imunologia , Proteína-Arginina N-Metiltransferases/genética , Pyroglyphidae/imunologia
2.
Am J Respir Cell Mol Biol ; 64(2): 247-259, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33264080

RESUMO

In allergic airway diseases, intermediate progenitor cells (IPCs) increase in number in the surface epithelium. IPCs arise from basal cells, the origin of hallmark pathological changes, including goblet cell hyperplasia and mucus hypersecretion. Thus, targeting IPCs will benefit future treatment of allergic airway diseases. However, the lack of adequate cell surface markers for IPCs limits their identification and characterization. We now show that CD44 containing exon v3 (CD44v3) is a surface marker for IPCs that are capable of both proliferating and generating differentiated goblet cells in allergic human nasal epithelium. In primary human nasal epithelial cells that had differentiated at an air-liquid interface, IL-4 upregulated mRNA expression of three CD44v variants that include exon v3 (CD44v3-v6, CD44v3,v8-v10, and CD44v3-v10), and it induced expression of CD44v3 protein in the basal and suprabasal layers of the culture. FACS analysis revealed two subpopulations differing in CD44v3 concentrations, as follows: CD44v3low cells expressed high amounts of proliferative and basal cell markers (Ki-67 and TP63), whereas CD44v3high cells strongly expressed progenitor and immature and mature goblet cell markers (SOX2, CA2, and SPDEF). Importantly, a blocking anti-CD44 antibody suppressed IL-4-induced mucin production by human nasal epithelial cells. Furthermore, CD44v3 was coexpressed with TP63, KRT5, or SOX2 and was upregulated in the basal and suprabasal layers of the nasal surface epithelium of subjects with allergic rhinitis. Taken together, these data demonstrate that high CD44v3 expression contributes to goblet cell hyperplasia in inflammation of the allergic airway.


Assuntos
Células Caliciformes/metabolismo , Receptores de Hialuronatos/metabolismo , Hiperplasia/metabolismo , Sistema Respiratório/metabolismo , Células-Tronco/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Éxons/genética , Células Caliciformes/patologia , Humanos , Hiperplasia/patologia , Hipersensibilidade/metabolismo , Hipersensibilidade/patologia , Inflamação/metabolismo , Inflamação/patologia , Mucinas/metabolismo , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , RNA Mensageiro/genética , Sistema Respiratório/patologia , Células-Tronco/patologia , Regulação para Cima/fisiologia
3.
Am J Respir Cell Mol Biol ; 60(4): 420-433, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30359079

RESUMO

A positive link between persistent cellular motion and a defective tight junction barrier allows increased antigenic penetration and contact between ligand-receptor pairs, leading to exacerbated allergic airway inflammation and remodeling. Given that collective cell migration involves cell-cell and cell-extracellular matrix adhesions, and given that IL-4 induces epithelial barrier dysfunction and decreases cell-extracellular matrix adhesions, we hypothesized that IL-4 may induce collective migration in the well-differentiated primary human nasal epithelial cells (HNECs). Well-differentiated HNECs were treated with IL-4, and the effects of IL-4 on cell migration were investigated using genetic and pharmacological approaches, live-cell imaging, a vertex model, and immunostaining. IL-4 disrupted the expression and localization of the tight junction proteins zonula occludens 1 and occludin, and it induced the cleavage and asymmetric distribution of E-cadherin in the HNEC layers. It also induced collective epithelial migration and cell shape changes driven by actin cytoskeleton reorganization. In addition, the effect of IL-4 on collective HNEC migration was reversed by pharmacologic and genetic inhibition of the αv-integrin-activating enzyme furin, and function-blocking antibodies for αvß5 or αvß6. In IL-4-stimulated cells, both anti-αvß5 and anti-αvß6 inhibited the phosphorylation of focal adhesion kinase. Furthermore, both ß5- and ß6-integrins were enriched in basal cells in the injured airway epithelium with allergic rhinitis. These findings suggest that αvß5 and αvß6 serve as critical mechanoreceptors in IL-4-induced collective HNEC migration through the focal adhesion kinase signaling pathway. These results have implications for targeting treatment of exacerbation of respiratory allergic diseases.


Assuntos
Antígenos de Neoplasias/metabolismo , Movimento Celular/fisiologia , Células Epiteliais/metabolismo , Integrinas/metabolismo , Interleucina-4/metabolismo , Receptores de Vitronectina/metabolismo , Hipersensibilidade Respiratória/patologia , Caderinas/metabolismo , Adesão Celular , Forma Celular/fisiologia , Matriz Extracelular/patologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Furina/genética , Humanos , Ocludina/metabolismo , Hipersensibilidade Respiratória/imunologia , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Rinite Alérgica/patologia , Junções Íntimas/patologia , Proteína da Zônula de Oclusão-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...